GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems
نویسندگان
چکیده
منابع مشابه
Linear energy-preserving integrators for Poisson systems
For Hamiltonian systems with non-canonical structure matrix a new class of numerical integrators is proposed. The methods exactly preserve energy, are invariant with respect to linear transformations, and have arbitrarily high order. Those of optimal order also preserve quadratic Casimir functions. The discussion of the order is based on an interpretation as partitioned Runge–Kutta method with ...
متن کاملEnergy-preserving integrators for stochastic Poisson systems
A new class of energy-preserving numerical schemes for stochastic Hamiltonian systems with non-canonical structure matrix (in the Stratonovich sense) is proposed. These numerical integrators are of mean-square order one and also preserve quadratic Casimir functions. In the deterministic setting, our schemes reduce to methods proposed in [9] and [6].
متن کاملReversible measure-preserving integrators for non-Hamiltonian systems.
We present a systematic method for deriving reversible measure-preserving integrators for non-Hamiltonian systems such as the Nosé-Hoover thermostat and generalized Gaussian moment thermostat (GGMT). Our approach exploits the (non-Poisson) bracket structure underlying the thermostat equations of motion. Numerical implementation for the GGMT system shows that our algorithm accurately conserves t...
متن کاملStructure Preserving Integration Algorithms∗
Often in physics and engineering one encounters systems of differential equations that have a non-trivial dynamic or kinematic structure, e.g., the flow generated by such a system may satisfy one or more algebraic or differential constraints. Moreover, this structure is often of physical significance, embodying an important concept such as conservation of energy. Traditional numerical methods f...
متن کاملEnergy-Preserving Integrators and the Structure of B-series
B-series are a powerful tool in the analysis of Runge–Kutta numerical integrators and some of their generalizations (“B-series methods”). A general goal is to understand what structure-preservation can be achieved with B-series and to design practical numerical methods that preserve such structures. B-series of Hamiltonian vector fields have a rich algebraic structure that arises naturally in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Non-Equilibrium Thermodynamics
سال: 2018
ISSN: 1437-4358,0340-0204
DOI: 10.1515/jnet-2017-0034